

Master of Technology (Transportation Engineering) SEMESTER II

			TEACHING & EVALUATION SCHEME									
	CATEGORY		THEORY			PRAC						
COURSE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS	
MTCE 2201	DCS	SYSTEM ANALYSIS & URBAN TRANSPORTATION	60	20	20	30	20	3	1	2	5	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Course Objectives:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes

- 1. Justify the need for urban transportation system planning
- 2. Plan the process of trip generation and distribution
- 3. Understand the four steps of urban transportation demand forecasting
- 4. Communicate transportation planning ideas effectively

Course Outcomes:

- 1. To understand Principles and techniques of Traffic forecasting
- 2. To understand concept and purpose of trip generation
- 3. To analyze different distribution models and assignment of model.
- 4. Understand economic analysis in urban transportation

Syllabus:

UNITI

Probability, statistics for traffic Engineering design: Random variable and statistical measures, Basic concept of probability, probability – laws, Binomial, Poisson, Normal and Exponential distributions.

Sampling theory and regression analysis, General consideration of the accuracy, cost and time requirements of data collection, sampling theory and principles for determining sample size and accuracy relationship, principles of the population mean and standard deviation, regression analysis examples.

INIT II

Traffic forecasting: Principles and techniques, Demand, price and capacity relationships, price elasticity, forecasting for long term demand, variables, determination of the design hourly volume.

Planning methods of transport system planning, stages of planning, Transportation study area, and collection of travel data, external cordon and screen-line, survey, zoning types of surveys.

UNIT III

Trip Generation Models: Introduction and definition, Factors governing trip generation, multiple

Chairperson
Board of Stadles
Sas Washaw Year apoch Visions Sayanger

Som Villand Village Vi

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Master of Technology (Transportation Engineering)

SEMESTER II

linear regression analysis, aggregated and disaggregated analysis, Category analysis.

UNIT IV

Distribution Models: Methods of trip distribution, Growth factor models, Gravity model, Tanner model, intervening opportunity model, competing opportunity model.

Assignment models: General principle, Assignment techniques, All or nothing Assignment, multiple route assignment, capacity restraint assignment, diversion curves.

UNIT V

Economic analysis: Need, costs and Benefits, Time horizon in Economic assignment, basic principles, methods of Economic evaluation. Traffic and the Environment, effects of traffic on the environment

Text Books:

Kadiyali L.R., Traffic Engineering and Transport Planning.
 Martine Wool and Brain V.Martin, Traffic System Analysis.

Reference Books:

- 1. Hutchinson B.G., Principles of UTS Planning, Mc Graw-Hill Publish.
- 2. Saxena, Traffic Planning and Design.
- 3. Bruton M.J., Introduction to Transportation Planning.

Chairperson
Board of Stadios
Stationary independent Valuabidy stays

Shel Valshoov Videnoe is Videnoe Videnoe is Videnoe Videnoe is odors

Master of Technology (Transportation Engineering) SEMESTER II

	CATEGORY		TEACHING & EVALUATION SCHEME									
			r	HEORY		PRACT						
COURSE CODE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2202	DCS	TRANSPORATION PLANNING	60	20	20	30	20	3	1	2	5	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. Basic understanding of what transportation planning is, its theoretical backgrounds and applications
- 2. Ability to understand the important concepts about public transport system

Course Outcomes:

- 1. To introduce the issues of transportation planning and transportation policy
- 2. To introduce travel survey method for understanding travel behavior
- 3. To introduce the key concepts of the urban transportation planning system
- 4. To introduce the fundamental concepts of public transport system such as system, technology and quality of service

Syllabus:

UNIT I

Transportation in Society: Role of transportation (Land, air, water) in civilization, Economic, social, political, environmental roles of transportation today in India.

UNIT II

The fields of Transportation Engineering: Different fields involved, system planning, scientific approach to model development science and professional judgment, organizations.

Component of transportation system: Transport technology, transportation systems, Transportation network and their analysis, vehicle and containers.

UNIT III

Vehicle Motion: Equations of motion, Resistances, Path characteristics, Prediction of vehicle performance, Generalized vehicle performance relationships, work, energy and fuel consumption, Continuous flow system: General characteristics, belt conveyors, pipe lines, capsule pipe lines, concepts of flow and design.

Terminals: Functions, Analysis, Process flow charts, Terminal processing time, waiting times, capacity and level of service concepts simulation probability density functions. Queuing theory, Passenger and Fright terminals, air, bus, railroad.

INIT IV

Transport costs, Demand and Supply: Concepts, types, future costs and present value, Treatment of inflation, cost estimating methods, choice of technology and cost output relationships,

Chargerson
Board of Stadios
Styl Valshoav Vidyapoets Vistorovsky hisyx

Shell Washing Vistoria

Master of Technology (Transportation Engineering)

SEMESTER II

Demand function, demand models, urban travel forecasting model, Demand for freight transportation, Projection techniques, Theory of transport supply, supply characteristics of transport facilities, pricing, supply characteristics o carriers, supply relationships for an urban transit time.

Transportation Network Flows: Merging of demand and supply relationships, Economic market equilibrium and extension to include level of service, network equilibrium traffic assignment.

UNIT V

Environment impacts: Noise impact, air pollution, impact on land and value, vibration, evaluation procedures, situation in India.

Decision making: Characteristics of transportation problems, problem solving process, multiple objective evaluation and selection methods, selection procedures, Economic evaluation methods, Long range transportation planning, Types of planning process Data base, Alternatives and their generation.

Operation plans, system operation and management: Operation plans, components, single line analysis, Network relationships, TSM Management scheme for reducing congestion in CED and on streets, Reducing travel peaks, traffic Engg. Measures, Road Traffic models for CBD, corridor operation planning, maintenance, Integrated operation planning and design of a system, Implementation: Urban transportation legislation, legal powers, financing.

Text Book:

• • • • • • •

......

- 1. Edward K. Morlok, Introduction to Transportation Engineering an Planning, Mc Graw Hill Book Co.
- 2. John W. Dickey, Metropolitan, Transportation Planning, Mc Graw Hill Co.
- 3. Kadiyali L.R., Traffic Engineering and Transportation Planning, Khanna Publication, Delhi.

References Books:

- 1. Wohl, Martin and Brien V.Martin, Traffic System Analysis for Engineeers and Planners, Mc Graw Hill Book Co.
- 2. Hutkinson, Bruce D., Principles of Urban Transport System Planning, Mc Graw Hill.

Chairperson
Board of Stadies
Statistical Vision of Visio

John Rediment Shri Valabran Varances Valabran Varances

Master of Technology (Transportation Engineering) SEMESTER II

	CATEGORY	COURSE NAME	TEACHING & EVALUATION SCHEME									
			THEORY			PRACT						
COURSE CODE			END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2203	DCS	DESIGN & CONSTRUCTION OF RIGID PAVEMNTS	60	20	20	-	•	3	1		4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. To study the behavior of pavements under various loads
- 2. To design the flexible and rigid pavements using different Empirical, semi-empirical and theoretical approaches
- 3. To understand the concept of Pavement Management System, pavement failures and its evaluation

Course Outcomes:

Upon completion of this course, the students should be able to:

- 1. Know the stresses, strains and deflections in rigid and flexible pavements; traffic loading; and material characterization.
- 2. Design methodologies for both rigid and flexible pavements
- 3. Understand the structural and functions failure and the evaluation of pavements

UNIT I

Theories Of Design Of Rigid Pavements: Wastergaurds analysis, pickets solution, Westergaurd formula for loads on applied area, Finite difference method, linear elastic layer method, Finite element method, Deflection in rigid pavements.

Design of concrete pavements: ESWL, Stress calculations, curling stresses, frictional stresses, infiltration stresses and load stresses, slab thickness design, use of charts and formula for diff. Load positions, Design of airfield pavements.

UNIT II

Pavement Joints: Types of joints, contraction and warping joints, dowel bars and tie bars, Temperature reinforcements, filling and sealing of joints.

UNIT III

Continuously Reinforced Concrete Pavements: Width and thickness of slab, Reinforcing steel design, Design and construction criteria, Factors affecting, crack width and spacing of CRC pavements, design of CRC pavement for Highway and Airfield.

UNIT IV

Design Of Prestressed Concrete Pavements: Stresses in pavements, Thickness design and prestressing techniques.

Chairperson
Board of Studies
Stat valsheav Vidyapreth Vidyapadaya

Son Resistant

Master of Technology (Transportation Engineering)

SEMESTER II

Evaluation And Strengthening: Performance evaluation, safety, serviceability and durability concepts, Design of overlays on rigid pavements, fibrous concrete overlays, economics of rigid pavements, construction and maintenance.

UNIT V

Construction Of Rigid Pavements: Formwork, mixing, spreading, compaction and finishing, slip form pavers.

Cement Concrete Mixes: Methods with special reference considering the requirements of pavements, comparison of different methods.

Text Book:

- 1. H.M.S.O. Concrete Road, Design and Construction.
- 2. Yodar E.J., Principle of Pavement Design

References Books:

- 1. IRC-18-1981, Standards, Specifications and Code of Practice for Construction of Concrete Roads.
- 2. IRC-58-1988, Guidelines for the design of Rigid Pavements for Highways.
- 3. IRC SP-49-1988, Guidelines for the use of Dry Lean Concrete as Sub Base for Rigid Pavements.
- 4. IRC-15, Standard Specification and Code of Practice for Construction of Concrete Roads..
- 5. IRC-44-1976, Tentative Guidelines for CC Mix Design for Pavements.
- 6. IRC-SP-46, 1977, SFRC for Pavement.
- 7. Sharma S.K., Principle Practice & Design in Highway Engineering.

Chairperson
Board of Studies
this without Vietness Vietne

Shrivation Videore

Master of Technology (Transportation Engineering) SEMESTER II

			TEACHING & EVALUATION SCHEME									
			THEORY			PRACT						
COURSE CODE	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2204	DCS	ANALYSIS AND PLANNING OF MASS TRANSPORTATION SYSTEM	60	20	20	-		3	1	-	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

Student will able to understand planning in urban transport, economic evaluation, network planning and development of mass transportation.

Course Outcomes:

- 1. To understand different aspects in planning of urban transport
- 2. To analyze the key factors in economic evaluation of transportation system.
- 3. To design bus route network planning system.
- 4. To understand the development of mass transportation.

Syllabus:

UNIT I

Urban Transportation Planning:- Modes of transport, Comparison of transit modes ,Problems, Issues ,Processes ,Inventories ,Forecasts, Goals and Plans ,Measures to meet problems, Urban Transportation Planning Models ; Generation ,Distribution, Model split, Route Assignment, Urban Vs Rural Development. Data Collection and Urban Transportation Planning :- Reasons, sampling, kinds, methods of collection, processing, population and land use, forecasting, Surveys- HIS,RIS, VKTS, PKTS ,Land use, Net work inventory, Origin- Destination, Application of I.T.

UNIT II

Economic Evaluation Transportation:- Proposals Methods: IRR,NPV,B/C,ROR, Comparison of the methods, Relation between Flow ,Speed and Travel cost

Mass Transport Demand Estimation:- Choice of public mass transport, Factors related to level of service of mass transport and commuter behaviour ,Regression models ,Diversion curves ,Multinomial logic model,

Basic approaches for model split, T E M and T I M, Estimating demand in transit planning studies, Demand modelling.

UNIT III

Bus Route Network Planning: - Different system of Bus Network generation, Integrated bus route planning, ,Activity intensity system, Models of integrated planning

Chairperson
Ecost of Studies
Shet Valdman Messageth Vishworkbyateys

Shri Reviserar Shri Vishnav Viserar Vishvav dyalaya, indons

Master of Technology (Transportation Engineering)

SEMESTER II

Demand direction, Desire based, Trunk and branch, Comparison, Analysis and performance Bus Scheduling:- Marginal ridership concepts, Data required, Allocation of buses on each route Fixing of bus fare

UNIT IV

Bus bay and terminal design:- Facilities required, site exploration, space requirements, Patterns, bus depots

UNIT V

Taxonomy of Transportation system and Development of Mass Transportation:-Complete transportation package for urban area network, vehicle terminal, control system ,Efficiency of modes, BRTS Justification, demand, scheduling, number of buses, planning of bus stops, spacing ,ETB, Charted buses, Dial-o-Bus, RRT, LRT, Para transit, Automated Highway , Monorail , Mini rail.

Text Books:

- Verma and T.V. Ramanayya, Public Transport Planning and Management in Developing Countries
- 2. Vuchic Vukan R. ,Urban Transit :Operations ,Planning and Economics, Prentice Hall,2005

Reference Books:

1. Grey G.E., and Hoel L.A., Public Transportation, Prentice Hall, 1992

Chairperson

Board of Standos

Shelyakidase Viduopoels Villenondystayo

Join Resistrar Shel Valshay Videncesh Vishvavdynka Ledora

Master of Technology (Transportation Engineering) SEMESTER II

			TEACHING & EVALUATION SCHEME									
COURSE CODE			1	THEORY			PRACTICAL					
	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2205	DCS	AIRPORT PLANNING AND DESIGN	60	20	20	-		3	1	-	. 4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

Course Outcomes:

Upon completion of the course, students should be able to:

- 1 understand the aviation system and its functions
- 2. know the airport planning process
- 3. conduct studies for the various elements of an airport master plan
- 4. plan and design basic airport facilities such as runways, taxiways, etc.

Syllabus:

UNIT I

Aircraft Characteristics: Landing gear configurations, aircraft weight, engine types. Atmospheric conditions affecting aircraft performance: air pressure, temperature, wind speed and direction. Aircraft performance characteristics: speed, payload and range, runway performance, declared distances, wingtip vortices.

UNIT II

Air Traffic Management: Air traffic separation rules: vertical separation, flight altitudes, longitudinal separation, and lateral separation. Navigational aids: ground based systems, satellite based systems.

UNIT III

Airport Planning and Forecasting: Airport planning studies: airport system plan, airport site selection, airport master plan, airport project plan. Forecasting methods: time series method, market share method, econometric modeling. Forecasting requirements and applications: airport system plan, airport master plan.

UNIT IV

Geometric Design of the Airfield: Airport classification: utility airports, transport airports. Runways: runway configurations, runway orientation, wind rose, estimating runway length, sight distance and longitudinal profile, transverse gradient, airfield separation requirements, obstacle clearance requirements. Taxiways and taxi lanes: widths and slopes, taxiway and taxi lane separation requirements, sight distance and longitudinal profile, exit taxiway geometry,

Chairperson
Board of Stadles
See Validate Villy Quotil Video Video Validate
See Validate Video V

Shri Valahnav Valanavski Vahvavskajakova, kudore

Master of Technology (Transportation Engineering)

SEMESTER II

location of exit taxiways, design of taxiway curves and intersections, end-around taxiways.

UNIT V

Aprons: holding aprons, terminal aprons and ramps, terminal apron surface gradients. Control tower visibility requirements. Structural Design of Airport Pavements: Soil investigation and evaluation: CBR, plate bearing test, Young's modulus, effect of frost on soil strength, subgrade stabilization.FAA pavement design methods: equivalent aircraft method, cumulative damage failure method

Text Book:

••••••••••••••••••

1 Airport Engineering -Rangwala Charotar Publication.

Chairperson
Board of Studies
Sert Validation Viewpaceth Viewpasseyatays

Soint Tedismar Shri Vaishnav Makasaasii Vistavaydysiiava istoria

Master of Technology (Transportation Engineering) SEMESTER II

			TEACHING & EVALUATION SCHEME									
	CATEGORY		THEORY			PRACT						
COURSE CODE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2205	DCS	AIRPORT PLANNING AND DESIGN	60	20	20	-		3	1	-	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

Course Outcomes:

Upon completion of the course, students should be able to:

- 1 understand the aviation system and its functions
- 2. know the airport planning process
- 3. conduct studies for the various elements of an airport master plan
- 4. plan and design basic airport facilities such as runways, taxiways, etc.

Syllabus:

UNIT I

• • • • •

Aircraft Characteristics: Landing gear configurations, aircraft weight, engine types. Atmospheric conditions affecting aircraft performance: air pressure, temperature, wind speed and direction. Aircraft performance characteristics: speed, payload and range, runway performance, declared distances, wingtip vortices.

UNIT II

Air Traffic Management: Air traffic separation rules: vertical separation, flight altitudes, longitudinal separation, and lateral separation. Navigational aids: ground based systems, satellite based systems.

UNIT III

Airport Planning and Forecasting: Airport planning studies: airport system plan, airport site selection, airport master plan, airport project plan. Forecasting methods: time series method, market share method, econometric modeling. Forecasting requirements and applications: airport system plan, airport master plan.

UNIT IV

Geometric Design of the Airfield: Airport classification: utility airports, transport airports. Runways: runway configurations, runway orientation, wind rose, estimating runway length, sight distance and longitudinal profile, transverse gradient, airfield separation requirements, obstacle clearance requirements. Taxiways and taxi lanes: widths and slopes, taxiway and taxi lane separation requirements, sight distance and longitudinal profile, exit taxiway geometry,

Chairperson
Board of Studies
Stot Valshess Vidyageeth Vidoreaddysbays

Shri Valshan Videnar si Vishnan Videnaeli Vishnan Videnaeli

Master of Technology (Transportation Engineering)

SEMESTER II

location of exit taxiways, design of taxiway curves and intersections, end-around taxiways.

UNIT V

Aprons: holding aprons, terminal aprons and ramps, terminal apron surface gradients. Control tower visibility requirements. Structural Design of Airport Pavements: Soil investigation and evaluation: CBR, plate bearing test, Young's modulus, effect of frost on soil strength, subgrade stabilization.FAA pavement design methods: equivalent aircraft method, cumulative damage failure method

Text Book:

••••••••••••••••••

1 Airport Engineering - Rangwala Charotar Publication.

Chairperson
Board of Studies
Seri-Validates Viewpoch Vielwandysbys
Saldy i

Sterl Valstriav Medaponezii Vistavav dvatava tottora

Master of Technology (Transportation Engineering) SEMESTER II

		*	TEACHING & EVALUATION SCHEME									
	CATEGORY		THEORY			PRAC						
COURSE CODE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2206	DCS	GEOMETRIC DESIGN OF TRANSPORTAITON FACILITIES	60	20	20	-		3	1	٠	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

To provide knowledge in transportation so that students can understand and be able to solve transportation related problems and design for highway mode of transportation with focus on highway users' characteristics, geometric and pavement design, traffic engineering, and transportation planning.

Course Outcomes:

Upon completion of this course, the students should be able to:

- 1 understand the concept of capacity
- 2 conduct traffic surveys
- 3 design the links and intersections
- 4 build safety into every aspect of design

Syllabus:

UNIT I

Geometric design provisions for various transportation facilities as per AASHTO, IRC and other guidelines, Discussion of controls governing geometric design, route layout and selection.

UNIT II

Digital image processing: Satellite image – characteristics and formats, Image histogram, Introduction to image rectification, Image enhancement, Land use and land cover classification system.

UNIT III

Vertical alignment – grades, crest and sag curves. Highway cross – sectional elements and their design for rural highways, Urban streets and hill roads.

UNIT IV

Grade intersections – sight distance consideration and principles of design, Channelization, mini round– abuts, layout of roundabout, Inter – Changes – major and minor interchanges, entrance and exit ramps, acceleration and deceleration lanes, Bicycle and pedestrian facility design.

UNIT V

Chairperson Board of Studies Sere Valorage Vid yap orth Visiews/Idyateya Sere Valorage

Shell Valshiav States Vishwar Jahaya Ladon

Master of Technology (Transportation Engineering)

SEMESTER II

Parking layout and design, Terminal layout and design.

Text Book:

1 Bernhardsen, "Geographic Information Systems, an Introduction", 3 rd Edition, Published by John Wiley Sons, 2006.

2 Lillesand T.M. and Kiefer R.W. "Remote Sensing and Image Interpretation", 5th Edition

John Wiley and Sons, 2008.

3 Peter A Burrough, "Principles of Geographical Information Systems", 1 st Edition, Oxford publisher, 1998.

Chairperson Board of Shaffes this validation Video oil Video which are tadary

Joint Texistrar Sirri Vaishnav Johnson

Master of Technology (Transportation Engineering) SEMESTER II

			TEACHING & EVALUATION SCHEME									
	CATEGORY		THEORY			PRAC	10	1	176			
COURSE CODE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
MTCE 2207	DCS	DESIGN AND CONSTRUCTION OF FLEXIBLE PAVEMENT	60	20	20	-	-	3	1	•	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. To study the behavior of pavements under various loads
- 2. To design the flexible and rigid pavements using different Empirical, semi-empirical and theoretical approaches

Course Outcomes:

Upon completion of this course, the students should be able to:

- 1. Know the stresses, strains and deflections in flexible pavements; traffic loading; and material characterization.
- 2. Design methodologies for flexible pavements
- 3. Understand the structural and functions failure and the evaluation of pavements

Syllabus:

UNIT I

Equivalent single wheels load concepts and applications, Relationship between wheel arrangements and loading effects, tyre contact area, Effect of load repetition, Effect of transient loads, Impact of moving loading, Factors to be considered in Design of pavements, Design wheel load, soil, climatic factors, Pavement component materials, Environmental factors, Special factors such as frost, Freezing and thawing.

UNIT II

Design of Flexible Pavements: Methods of design, empirical, semi empirical and analytical, Group Index, CBR, California Resistance value, Triaxial, Mcleod, Burmister and F.A.A. method, Pavements models and stress analysis of pavement system, Design of flexible pavement for airfields.

UNIT III

Construction of flexible pavements: Type of Highway construction, Earth road and Gravel roads, soil stabilized roads, W.B.M. roads, black top roads, seal coat, prime coat and tack coat, premix, Bituminous construction procedures: Surface dressing, Grouted macadam, Bitumen bound macadam, Bituminous carpet, Benkelman Beam method, Pavement roughness and pavement strength, fracture patterns and disintegration, present serviceability of pavement system and cost analysis, optional selection of flexible pavement component.

Chairperson
Poard of Studies
Stat Valstav Vedsameta Vistwardsystays

Shri Medismar Shri Mishou Videnpeth Votavividatiya Indone

Master of Technology (Transportation Engineering) SEMESTER II

UNIT IV

Design of bituminous concrete mix: Principles of mix Design, Factors, Method: Marshall, Habber and Field, Hveem, Triaxial, Comparison of different methods.

UNIT V

Strengthening of pavement: Types of failure, remedial measurement, Pavement Evaluation Methods.

Text Book:

1 Sharma S.K., Principle Practice and Design of Highway Engg.

2 Kadiyali L.R., Highway Engg.

3 Kadiyali L.R., Principles of Highway Engg

References Books:

- 1 IRC Special Publication 19-1977, Manual for Survey Investigation and Preparation of Road Project.
- 2 IRC Special Publication 20-1979, Manual for Route Location, Design Construction and Maintenance of Rural Highways.
- 3 IRC-73-1980, Geometric Design Standards for Rural Highways.
- 4 IRC-52-1970, Design Tables for Horizontal Curves for Highways.
- 5 IRC-52-1973, Recommendation about the Alignment Survey Geometric Design of Hill Roads.

Chairperson
Board of Bladies
Shel washaw Velyapress Vishwashdyalaya

Soin Tealisten Shrivisheav dysheeti Victoristen Vigtore